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ﬁﬁgggﬁiﬁ (Q, F, P) D) /AEE%‘:(Axiomatic system of probability space)
FE AR ZE ] (sample space) Q = R or H PR £ & (Finite set)

o-E &R (ofield) F (# QD ER7D E B 2Rl subsets of 0))
1. ?(i*ﬂ,—";ZlKgEFEE]Qé’é‘{}O (F contains the sample space Q.)

2. BRADFIZCEENDLGLIE. RBZRAC = O\ ALFITEENSD,

If F contains an event A, F also contains the complement A°€.
3. AIHEEDOERINAIL PFIZEEFNSLELIE, AAEEOIES
U2, AAFIZEEND,

If F contains a countable number of events {4;};2,, F also contains the union of
countable events U;2, A;.

T 3R 43 %1 (Probability distribution) P
1. EEDSZRA € FIZRLT. (Foranyeventae ) P(A) € [0,1].
2. P()=1.

3. TAEBEOHERERIAIC (A, NA =0fori=+))IT®{LT,

For a countable number of exclusive events {4;};2,(4; N A; = @ for i # ),

P(U;'x;1 A;) = Zfi1 P(A;). W\IEMEM countable additivity)
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NEZMSE NN D E AR E Basic properties derived from the axiomatic system)
45 1 (Property 1) (A, EFIX, =nN2, A, EF.
v Ni2q A = {0521 ADY = {U2; AfJC € F.
BEDODESIZIF-FILADERBIMDSHEDS, (The latter equality follows from De Morgan’s law.)
iZlE. Af € FIZDTU; A7 € FOMEL, TOHRESIEFICEFENS-OTHS,

The last is because Af € F implies U; A € F, of which the complement is included into F,

HEI1ML, EEEEICE ODTERMINDIEENFIZCAODTWNAIEF
EMNHAIVEIILLL. BIDLTEESEREZXITOCENTES,

Property 1 implies that we can safely use set operations, without confirming the inclusion of a set
generated via set operations into F.

1% B 2 (Property 2) P(A°) =1—-P(A).
Y AEACIFEWTHER DDA U AC = QIED T,

Since A and A€ are mutually exclusive and A U A¢ = Q holds, we have
1=P(Q) = P(AU A°) = P(A) + P(A°).
%fﬁ@%% (& N EI%HJD /£'|§E75“5'TIE5 o (The last equality follows from the countable additivity.)
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i}f@;ﬁ:?ﬁ\ %ﬁp?ﬁ\hé %K'l‘ftg(Basic properties derived from the axiomatic system)

4 E 3(Property 3) For A c B, P(A) < P(B).
C=B\ALTEERIT HE ALCIFEERERMNDAUC =BIEDT,

Let C = B \ A. Since A and C are mutually exclusive and A U C = B holds,
P(B) =P(AUC) =P(A)+P(C) = P(A).
BFOFSIEIAEINEENS FFSTERDIEEEILHED,

The latter equality follows from the countable additivity, and the inequality does from the non-negative

property of probability.

B
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ﬁ}fﬂ;ﬁ:?ﬁ\ 15:’;%75\*1:5ngd:'l‘ig(lmportant properties derived from the axiomatic system)

*ﬁ%ﬁz.l (Lemma 2.1)
1455 4 (continuity)
ERINANE DB FTUA; D A BB IE. P(

If events {4;};2, are decreasing (4; 2 4;;+1),

EH (A2 HEEIFIA, A, )E5IE. P(

If events {4;};2, are increasing (4; € A;41),

EREIED AR, BRn - oZERSHDMIICIRYEEDRIZH D,

The usefulness of the continuity is that the limit n — c can be moved from the inside of the probability
distribution to the outside.
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?ﬁ%ﬁz.ld)ﬁﬁ’l‘iwéﬁ Eﬁ](Proof of the continuities in Lemma 2.1)
AIFDERIFEBEF DERZF>CARATES O BRFDAZEAT D,

We only prove the latter statement since the former follows from the latter.
P(N2,A4;)=1—-PUZ,4;)=1—- 11m P(AS) = 11m P(A,).
2EBDESIX., (ADBILESIE, {Al}lii'%)m?é_aafz#miaﬁab\eﬁé—}o

The 2nd equality follows from the fact that {A7} is increasing if {4;} is decreasing, and from the latter statement.

B; = A;MDB; = A, NA;_ £ B, BTHRT KOIZ, (MBI [FEWIHER.
(i fEEDn € NIZxLTUL, B; = A, (iU, 4; =U2, B;lED T,

Let B; = A; and B; = A; N Af_,. As shown shortly, the following properties hold: (i) {B;};=, are mutually
exclusive, (i) UL, B; = 4, for any n € N, and (iii) U;2; 4; =U;2 1B Thus, we have

P(OAi>= <U ) ZP(B)—hm P(B) Aﬂp([}%)

i=1 i=1
= lim P(4,).
n—-oo
=AIDFSE(i)Mo. 2F B XRIEME ., 4% B ITBRIMEE.
X)) MBHRED,
The first equality follows from (iii), the 2nd from the countable additivity, the 4th from finite
additivity, and the last follows from (ii).

TOYOHASHI

UNIVERSITY OF TICHNOLOOY




?ﬁ%ﬁz.ld)ﬁﬁ’l‘i{wéﬁ Eﬁ](Proof of the continuities in Lemma 2.1)
For B; = A; and B; = A; N A;_, prove
(|) Bi N B] — @ fori >j, (ll) An =U?:1 Bi’ (|||) Ul(-x;l Ai =U(l-x;1 Bi'
() BinBj = nA DN (4 NAS) =4 NAf  Cc A1 NAS, =0.
“EEHDFSIF. i > ITRLTA c 4,E47 , 2 A] MBS, cl
A] C Ai_lo)f:&)-ts%%)o
The second equality follows from A; c A; and A7_; 5 A;_; fori > j. cisdueto 4; c 4;_;.
(i) JRMETIERAT S n = 1DGFEF. 4, = By EYRED 4,1 =V B,
#RELT. 4, =UL, BZT~Y,

The proof is by induction. The case n = 1 follows from 4; = B;. Assume 4,_, =u*}! B;, and
prove 4, =V, B;.

A, =B, UA,_; =B, U (U?z_ll Bi) :UTil=1 B;.
RUDFESIL, (ANEMITHAZEEB, DEEENBHED,
2FEHDESFRMEDRED O THS, An

(ii)) U2, A; =02, BiIXLLTIDBHED, U, 4, =u2, B; follows from) B,
A; DA NA;_, =B, = U2, A; DU2, B;,

Foranyn € N, 4, =U~, B; cU2, B, =U;2, A; cU2,; B;.
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ﬁﬁﬁﬁj\ﬁ F;EE] %ﬂ@'l‘EE(Properties of probability distribution functions)
HEREBXDERSMEHPy ()T T TERSNSD,

The probability distribution function Py (x) of a random variable X is defined as follows:

Py(x) =P({w € Q: X(w) < x}).

EE 1Property 1) x; < x, = Py(xxy) < Py(xy).

{w: X(0) <x1}c{w: X(w) < x, }LTEEDQEFAENSRED,
It follows from {w : X(w) < x;} € {w : X(w) < x,} and the monotonicity of probability.

% & 2 (Property 2) lim Py(x) = 1.

v DMERIIAERCEFFERDERGCOT, ZADBRIEFET D,
B, 8Py (n)}n-, S L THBRZETE T 5 L.

The limit on the left-hand side (LHS) exists, since any distribution function is bounded and non-
decreasing. In particular, computing the limit for a sequence {Pyx(n)}, -, yields

lim Py(x) = lim P(X <n) = P(U {X < n}) =PX <o) =1,
X—00 n—oo n=1

—EBDOFSIL EEROEREN SR,

The second equality follows from the continuity of probability.
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ﬁﬁﬁﬁj\ﬁ F?EI %ﬂo)'TEE(Properties of probability distribution functions)

% B 3(Property 3) lim Pyx(x) = 0.

X——00

'|SIEE 20D EIE BA 7&%’:’% L) IRt o (Repeat the proof of Property 2.)

% & 4 (Property 4) li?g Py(x + a) = Py(x) foranyx € R.
a

.0 1 (o' 1
lim Py (x + a) = lim Px(x+—)=P<ﬂ {XSx+—})=P(XSx).
alo n—0oo n n=1 n
“HEHDOFFIE, EROERMENSHD,

The second equality follows from the continuity of probability.

4 5 B (Property 5) ZE*@BEII% Py(x + a) MTFEFET B (The limit from the left exists.)
a

1 o0 1
lim Py (x + a) = lim PX<X——)=P<U {XSx——})=P(X<x).
atTo n—oo n n=1 n

N =z

7I,§\(Remark)
DHEBSTERETHA-ODBET R EFHIILUTTH S,
The distribution function is continuous at x if and only if

Plw € Q: X(w) =x}) =0.
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Eﬁﬁﬁj\ﬁ FBEE] %ﬂo)'TEE(PropertieS of probability distribution functions)
'|'fE§6(Property 6)

SHEABOTERRIL. ERAEETHS,

There are at most countable number of discontinuous points in any distribution function.

TERMRAEARDESDI. RTRETES,

The set D of all discontinuous points can be represented as
(0.0)

D = D,,, D,={x€R:Py(x+0)—Py(x—0)>1/n}.
n=1
DMBEBDERMENS. D ICBRI ST ERERT—DEBET HE.
BEEEXDGELED/nIBEMNT 5, P MBEBDEEIL[0, 1]72D T,
D, BT A EHE A DEHICEATHIRD LERKEFS,

The monotonicity of Py implies that Py increases by at least 1/n when one discontinuous
point in D, is passed. Since the image of Py is [0, 1], we have the following upper bound on
the number of discontinuous points in D,;:

0,1 "
|D,| < |[1/n]| =n |D,,|:D,, D E 3% #(Number of elements in D,,)

HIE EEDn e NIZHLTD, X EREESTHAZEEZEKT S,
TP ZA, FEGEAREARDIISLAAIEETHS,

which implies that D,, is finite for any n € N. Thus, the set D of all discontinuous points is at
most countable.
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ﬁﬁgﬁj\ﬁI%%(@ﬁj\ﬁg(Decomposition of probability distribution functions)
Py (x) = P¢(x) + Pg(x) + P (x).

%ﬁjﬁtﬁﬁj\ﬁ(mscrete distribution)
PHEP, DA B R THHENT HRERE R TH S,

P is a step function that increases only at the discontinuous points of Py.

Efﬁ,ﬁ*ﬁ((ﬁontinuous distribution)

ERZERHpy()DNFELT,. UTTRETES,

For a probability density function (pdf) px(x), a continuous distribution has the following representation:

X

PE(x) = j Dy (x)dx.

—CO

##Eﬁj\ﬁ(smgular distribution)

PRIEERRTHAON, EDECAWMOFRIGETH D RFERTITEBLAL,

Py is continuous but not differentiable almost everywhere. It will not be discussed in this class.
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Tt 2225 BE B 2 D 1% & (Properties of pdfs)
'|$§ 1 (Property 1)

d
—PE() = px(0).

HERFEEEBOEREMABAFOERREENHED,

Due to the definition of probability distribution function and the fundamental theorem of calculus.

'|‘$’§2(Property 2)
px(x) = 0.
c EE 1 EHERS BB OBEFBERDENSRED
Due to Property 1 and the non-decreasing property of any probability distribution function.

% B 3(Property 3)

(0]

J_oopx(x)dx =1.

v lim Py(x) = 14D, (Dueto lim Pe(x) = 1.)

X—00
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EE%‘E‘FE_F%%&O)%H*(Meamng of pdfs)
ERERTHX D7 mER

Distribution function of a continuous random variable X
X
Py(x) =P(X <x) = j py(x)dx'.
(00]

B 2 FE R My DX [, b] 12 T RS (1, FEERATH A
R (e, blI- A DHEEE R .

The integral of the pdf py over the interval [a, b] means the probability with which the
random variable X falls into the interval (a, b].

fabpx(x)dx = f:PX(x)dx - jiopx(x)dx

Px

=PX<b)—P(X<a)
=Pla< X <D).

a b X

REDESIX HRNBRA={X<a},B={a <X <b}DHEAUB =
(X < bYEHERDOBRIMEMEENSHED,

The last equality follows from finite additivity of probability and the property A U B = {X < b} for the
exclusive events A = {X < a}and B = {a < X < b}.
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%?'ﬂ:(Quantization)

E— AR CRET HEHEEEEX € RE4ADDERIE(Q, . [cEFILT
3, SMHIEOHBEELEBRERLSBT ALSICEELLY,

Quantize a continuous signal X € R occurring at a non-uniform ratio into four discrete values {Q;};_,.
Define the occurrence ratio of each discrete value that is consistent with experimental results.

EEXDERZERE R XX THAIERTET 5, RO KLIIZEFILER
QETEET S,

Suppose that the pdf pyx of the signal X is known. We define a quantization function Q(x) as

rQo forx < Ly,
Q(x)=<Q1 for Lo < x < Lq,

Q2 forL; <x <L,
\Qg for L, < x.

BIZ I, BEFRIEQ, DHIRMEE L LLTICELLGSIET TH S,

For example, the occurrence ratio of Q, should be equal to

Ly
J px(x)dx.
L
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ﬁff\ﬁﬁj\ﬁ@,ﬁﬂ ?#ﬂ_ﬁ(Expectation of continuous distributions)
BE A M DEFEDBARALG—MRILEL T, BT OIAFEEEELIZLY,

Define the expectation of continuous distributions as a natural generalization of the expectation of
discrete distributions.

%E&é;&l (S Z(:ﬁbfs X’&pl = P(X = Xl') (Xi < Xj, I < ])Eiﬁf:?%ﬁﬁ&ﬁﬁ
REHETDE P MEBPIERDELIIZRITES,

Let X denote a discrete random variable with p; = P(X = x;) (x; < x;,1 <) forintegers i € Z. The
distribution function Py can be represented as follows:

[
Pe¥)= ) p; forx € [x;xis0),

j=—oo

ﬁﬁgplwﬁj\*ﬁ@"ﬁm:&é%ﬁpl = Px(xl') — PX(xi_1)€1§:)r‘_’s

Using the representation p; = Px(x;) — Px(x;_,) based on the distribution function yields

FIFO0l e Y faop= Y fo it i) oy

Xi — Xi-1

l=—00 l=—00

- j FOOpx(X)dx as |x; = xi_1] = 0.
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E{f\ﬁﬁj\ﬁ@,ﬁﬂ ?#1@0) I'_E%(Definition of the expectation of continuous distributions)

I7 1xlpx(x)dx < oD &E | BHRREHXOHFEELUT TEERT 5,

If ffooolxlpx(x)dx < oo holds, the expectation of a continuous random variable X is defined as
(0 0)
E[X] & j xpy(x)dx .
— 00

_ﬁg‘ft(Generalization)

H5RFERMZEAEFIZHLT I (0)|px(x)dx < oD EE F(X)DHATH
EZLLTTEET Do

Iff_oooolf(x)lpx(x)dx < oo holds for some deterministic function f, the expectation of f(X) is defined as

ELf (X)] j Py ()dx.

12, f(x) = xDIHFEDHAFEE[X]ZF. f(x) = (x — E[X])?DIGE
DEAFEV[X] = E[(X — E[X])?|Z 2 ELEMRES,

In particular, we refer to the expectations for f(x) = x and f(x) = (x — E[X])? as mean and
variance, respectively.
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