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:’,&\\*D @'l‘EE(Properties of summation)
45 1 (Property 1)

n n n

Z(axi + by;) = ale- +b2yi.

i=1 =1 =1

JRHEATALEAT %o n = 1DBZSXBRALD T n = kDIZE DAL
ZIRELT.n=k+ 1DZEZTY,

The proof is by induction. Since the case n = 1 is trivial, we assume the correctness of the
statement for n = k, and prove the statement forn = k + 1.

k+1 k
D (@x; +by;) = @iy + by + ) (ax; + by)
i=1 i=1
k k
= @ + by +@ ) x+b Yy,
i=1 i=1
k k k+1 k+1
=a xk+1+le’ +b yk+1+2yi =azxi+bZYi- u
i=1 i=1 i=1 i=1
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i fﬁ*ﬂ 7)) '|‘$E(Properties of summation)

'|'$E2(Property 2) n 2 n n
$a) <3 5w
n 2 n n n n
=1 =1 j=1 i=1j=1

REDFEST, BIAY; 0 1TEo>THRE FERTHSH=8.
BIOMEE 1R,

where the last equality follows from Property 1 of summation, since the coefficient
x; is a constant for the summation 3 ; x; .

ERGHRNESZ A EICARELLUTORRBITRLTES R A ST !

Never re-write the convenient summation notation as the following representation unsuitable for
computation!

X; =X1 + Xy + -+ Xy,

E

=1
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HA 45 & 0D 14 & (Properties of Expectation)

% 55 1 (Property 1) EFEDWEERZHXEYIZH LT, (Forall random variables X and Y,)

ElaX + bY] = aE|[X] + bE[Y] foralla,b € R.

'|$ E 2 (Property 2)

VIX] = E[(X — E[XD*] = E[X?] — (E[X]D?.

% B 3 (Property 3) JRT IS FEERT 2F {Xi}?:l [ZxfLC.

For independent random variables {X;}i-,

E [ﬁ 9i(X)| = ﬁ E[g;(X:)].
=1 =1

5&1‘[1&0)%%75\6% > o (Due to the definition of independence.)
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73 B D 1% B (Properties of covariance)

MEE 1 (Property ) E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y].
v © E[(X = EIXD)(Y — E[YD)] = E[XY — XE[Y] — E[X]Y + E[X]E[Y]]
= E[XY] — E[X]E[Y] — E[X]E[Y] + E[X]E[Y] = E[XY] — E[X]E[Y].

TOMDMERERXEY T LT OEHEEI=I LS, BERELFIEINDS,

Two random variables X and Y are said to be uncorrelated if the following holds:

E[(X — E[X]D(Y — E[Y])] = 0.
%8 2 (Property 2)
ZOMNEEREHXEYNHIAGLIE, XEYITEMBETH D,

If two random variables X and Y are independent, they are uncorrelated.

,Hﬂ ?#ﬂ_ﬁ ) '|§E E 3 75\ ro « (From Property 3 of expectation, we have)

E[(X — E[XD(Y — E[Y]D)] = E[X — E[X]]E[Y — E[Y]]
= (E[x] — E[XD(E[Y] — E[Y]) = 0.
5I§(Remark): JE[iIE L(@L\o (The converse is not correct.)
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*H FasE] 1,% %ﬂ(Correlation coefficient)

FHEREBXEY DR EETNE Nogbor £ET B,

Suppose that random variables X and Y have variance ¢Z and o, respectively.

PRI R 5L , _ BLX — EXD(Y ~ BYD]

Correlation coefficient Ox Oy

*ﬁ%51 (:I_:/_.:/:Llj}l/\yd)x%it)

Lemma 5.1 (Cauchy-Schwarz inequality)
(E[XY])? < E[X?]E[Y?].
BROHERTXY # 0756 FHILILXY = aX (Ja € R)IZRS,

Suppose XY # 0 with a finite probability. The equality holds only when Y = aX for some a € R.

fHRES. 10 b, AR R pERXME[-1, 1]ICAY. p = 01X EFEBEZ.
p = +1XY — E[Y]HX — EX|DEHRETHAH_ELEETT,

From Lemma 5.1, the correlation coefficient p falls into the interval [-1,1]. p =0 and p = +1
indicate that X and Y are uncorrelated, and that Y — E[Y] is a multiple of X — E[X], respectively.
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*ﬁ%ﬁﬁl@%ﬂi IEUE](Proof of Lemma 5.1)
HERITX = 0F 1LY = 0DGEIXBEHELD T, X # 050 DY # 0ZRET .

Assume X # 0 and Y # 0, since the case of X = 0 or Y = 0 with probability 1 is trivial.
BEELS (t) = E[(tY — X)?]ZEE T B, (Define the function f(t) = E[(tY — X)?].)
BEAFEDTEE 1 hV5 | (Property 1 of expectation implies)

f(t) = E[t?Y? — 2tXY + X?] = E[Y?]t? — 2E[XY]¢t + IE[XZ].

2
= E[Y?] (t — IIE[[);ZD + E[X?] — (EE[E;Z]])Z .

= - HDT. | (E[XY])?
EEDt e RICEALTS () 2 04DT. | - min f () = E[X?] - T

Since f(t) = 0 holds for any t € R, we have
NEI——- 22T IYDAFEREFMTHS,

which is equivalent to the Cauchy-Schwarz inequality.

EENRIITEIULETEHE. t, = E[XY]/E[Y?]ELTF(t,) = 0TH 5.
The equality holds If and only if f(t,) = 0 holds with t, = E[XY]/E[Y?].

E[(X —t,Y)?] = 0 < X — t,Y = 0 with probability 1. n
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ﬁj\ jﬁi& D) *D (Sum of variance)

I'_EIEES. l(Theorem 5.1)

X ZEMEELTHEREHINET D, MY =Y X, D0 EIE.
SEIDFZZHELLY,

Let {X;}i, denote uncorrelated random variables. The variance of the sumY =Y X;
is equal to the sum of the variance.

VY] = z VIX,].

n
=1

5I§(Remark)

EAEREMMTRYBOEHETHIES QML ICESH
ZTH, B3R EHIEIHED,

The theorem is of course correct, when the assumption of uncorrelated variables is
replaced with pairwise independence or independence, which are stronger conditions.

TOYOHASHI

UNIVERSITY OF TICHNOLOOY




IHEIE5.10) EIE IEUE](Proof of Theorem 5.1)
X =X, — E[X;]EHLIET, —fBMHEERSTELLL EX,] = 0B RETES,

Without loss of generality, we can assumed E[X;] = 0 by letting X; = X; — E[X;].

HIFEOMHE 1ML, E[Y] = X, E[X;] = 0D S, TN X,

Property 1 of expectation implies E[Y] = }}; E[X;] = 0. Thus, we have

n 2 (n n | n o n
= st =g (Y x ) [ =8>S x| = > wiren

| \i=1 _ i=1 j=1 | i=1j=1
HEDFSE, HFEDOEE1DEHTHD,

where the last equality is due to Property 1 of expectation.

EAEBREE| XX = 0 (i # ))ZES=HIZ. #8FE =222 (F5.,

We decompose the summation into two terms to utilize the assumption of uncorrelated variables,

vIY] = Z E[XF]+ ) BIXiX] = Z E[X7] = iv[xi],
i=1 i=1 i=1

£

mEDEEXE[X;] = 0D BH5,
where the last equality follows from E[X;] = 0. -
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EE$ % éﬂ D *g:j%i%"t(Standardization of random variables)

EHus 8o O EMERERER EHII{X, )Y, (TR LT, EE LN t-
REREHYEUT CESET S,

For uncorrelated random variables {X;}, with mean u and variance 4?2, define the
standardized random variable Y as

n
NG o

i=1

EEZ%S%’!;&Y(& zlzig()ﬁj\ﬁﬁlfﬁ)éo (The random variable Y has zero mean and unit variance.)

T B ean: 1 CEX]—p_ 1 u—u
IE[Y] :ﬁ; o :\/_ﬁz . = 0.

=1

43 8 (variance) : V[Y] = E[(Y — E[Y])?] = 1. M L, confirmit)

AR (Remar) THOHNBRIDOHEREERIT ., ZEREEZHEFEEIND,

A random variable with zero mean and unit variance is called standard random variable.
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NG| E@Eﬁ$5ﬁ® ;& % '|‘f|:|_(VaIidity of axiomatic probability theory)
TR L (Ll AN ? (What is probability?)
OLIDEIDEHIETH D, (NEEE

It is a real number between 0 and 1. (Axiomatic definition)

B B D& KEERIL30%TH D, (FEIEE)

The chance of rain in tomorrow is 30%. (Belief)

OAA U ERITHEERILTRAE S, (FEE)

Coin-tossing results in a head with probability 1/2. (Frequency)

'Qf H®H *?%(Today’s goal)
PNEEMERTEELELTOERLERTESIZLETTT,

Prove that axiomatic probability can be interpreted as frequency.)

HEEREELTOHEERL, REZTIE T,

The interpretation of probability as belief is not treated in this lecture.
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j(’!iﬂ 7)) 55 ;f EJ] (Weak law of large numbers)

IHEEES.Z(Theorem 5.2)
XY EFEN B DR — 5 TS HRELMIIES 5, BEL KT
EEREGSIX(E[X—w) X —w)] =0fori #j) . 4BRn —» wolZTHULVT,
BT T Y, (XTI ulTHERIERT B,

Let {X;}-; denote a sequence of identically distributed random variables with mean p and variance

a2. If they are uncorrelated, the arithmetic average converges in probability to the mean u as n - .

n
1 p
I =a2w
i=1

REBOEDRYILDFIINZ HAFEZERLIELE A D,

We can say that expectation was defined so that the law of large numbers holds.

ﬁﬁzuﬂﬁﬁ(Convergence in probability)

Yngu & limP(|Y,, —u| <€) =1 forany e > 0.
n—o>00
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Bl - a1 % HS(ExampIe: Coin tossing)

M = RIFEBIZ, iBBICRAENIEX, = 1. EAENIEX, =0&F 5,
ML FRITEn B T oz EZICRAE AR EEEY, = n" 13X, &7
%, TEL.2M 5., lXEEY, [XFHE[X,]ICUINEKT S,

Let X; = 1 for a head in ith coin tossing. Otherwise, X; = 0. The relative frequency for heads is defined
as Y, in n independent trials of coin tossing. Theorem 5.2 implies that Y,, tends to the mean E[X;].

p
,~EX]=1-p+0-(1—-p) =p,

L plE R EHERTORNELIERZEZRT

where p represents the probability with which a head occurs in the sense of axiomatic probability.

NEERIL, T2 EBREIT o ESITERNEET 2EXHEES
fRIRTE S,

Axiomatic probability can be interpreted as a relative frequency at which the corresponding
events occur in infinite trials.
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;HE IE5 20) EIE Eﬁ] @D i%ﬁ%(Preliminary for the proof of Theorem 5.2)

fH185.2 (VILATDAZEZL) Lemma 5.2 (Markov's inequality)
X|]

E
P(X| = a) < for any a > 0.

EIEEE(Proof)Z *E’ﬁ‘&ﬁ’;&l(l)ﬂ > a)’éﬁ’J’CZEiﬂ’éﬁﬁ'd’éo

Represent the left-hand side (LHS) with the indicator function.

P(1X| =z a) = E[1(|X]| = a)], 1(true) = 1, 1(false) = 0.
SE[1(X| = a)] =1-P(X| = a) +0- P(|X| < a) = P(IX| = a).

o = mE e = =
HETRERISHT S LERAZRED, LX) za)s%.

Use an upper bound on the indicator function.

v For |X| = a, 1(JX] =2 a) =1 < |X|/a. Otherwise, 1(|X| = a) =0 < |X|/a.

TR, P(IX| = a) =E[1(X]| = a)] < IE“X”. .

Thus, we have a
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;HE IE5 20) EIE Eﬁ] @D i%ﬁ%(Preliminary for the proof of Theorem 5.2)

*ﬁﬁlﬁ&?ﬁ (?It:/ljo)Z:%:T:t) Lemma 5.3 (Chebyshev’s inequality)

E 2
P(|X| = a) <

forany a > 0.

EIEEE(PFOOf) C WIIATDAEFELEFEHLT, (Using Markov’s inequality yields)

P(X| = a) = P(|X|2 > aZ) < E[)iz] ]
a

FT t\\:/Ij D ;F%F :T:t @%%(Signiﬁcance of Chebyshev’s inequality)

TILATDAREKICLDERE[|X|]/ald. XD EBDHERLEHTEE
EEAHLLDIZH LT, FIES DA EKICKB ER E[X?]/a? 1.
FHENEZ TH 5o

The upper bound in Markov’s inequality is difficult to evaluate, unless X is non-negative. On the
other hand, the upper bound due to Chebyshev’s inequality is easy to calculate.
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IHEIE5.20) §IE IEUE](Proof of Theorem 5.2)
& ca - AN

It is sufficient to prove the following:

FEDe > 0l LT FIEV T IDAREXEFHL.

For any € > 0, using ChebysheV’s inequality yields

E[(Y, — 7]
62

lim P(|Y,, — u| =€) = 0.
n—-00

P(lYn—,U| ZE)S

EEY, = n~ 1Y X; D5, (The definition of Y, implies)

o -
1 o’
E[(Y, —n)?] =E (E;(Xi — M)) =

EEDEFHEZEST. ZRDFSZEEND L,

(Confirm the last equality by using the conditions in the theorem.)

%*LKb A (Thus, we arrive at)

2

o)
1 — > < lim—=0.
AggoP(lYn ul=e) < lim —, =0
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